
Presumo

Java Message Service Implementation

High Level Design
 Author: Dan Greff

Document version: 0.2

1

Introduction

When considering the design of a messaging system it is helpful to think about the
basic problem that it must solve. Any basic communication system must get a message
containing data from point A to point B. However, the JMS API demands much more than
simply getting a message from point A to point B. It is important to understand the high level
features of JMS since their implementation drives the overall design.

 Asynchronous communication is the first major distinction between JMS and other
communication mechanisms such as RMI. This means that when an application at point A
needs to send a message to point B, it does not need to wait until point B receives the
message to have a level of certainty it arrived. In JMS, the application at point A simply hands
the message to JMS and assumes the middleware will achieve eventual delivery. One
advantage to this style of communication is that the application at destination B, does not have
to be running when point A sends the message, in order to receive the message. One could
make a rough analogy of asynchronous messaging and two people sending email.

 The JMS API decouples two communicating applications further through the use of
intermediary targets (Queues and Topics) rather than having the applications talk directly to
one another. Consequently, the application at point A does not have to know there is an
application at point B. Instead, point A produces messages to an intermediary Destination
that the application at point B may or may not be consuming messages from. This frees the
application code at point A of this logic (although the designer still must coordinate the actions).
The JMS implementation must receive the messages from any given application, discover
where the messages needs to go to, and continually try to deliver the messages to the
appropriate receivers. This is the basic problem all JMS implementations must solve. How
the problem is solved is what gives each implementation unique characteristics although the
outward functionality should be identical.

This document is a high level description of how Presumo solves this problem. It is
intended to be a guide for developers on the project, but advanced users wishing to learn more
about the Presumo architecture may find it interesting.

 The first section contains the design mantras that servers as a list of what Presumo
emphasizes and de-emphasizes in being a JMS implementation. The subsequent sections
will describe the design of the various subsystems and major functional areas that compose
Presumo.

Project Mantras

• Presumo must be small enough to be used within a single JVM by components that may
wish to decouple their interactions, while being able to scale to massive distributed
applications.

• Servers must be able to interconnect and communicate within scalable topologies (not

fully connected clusters!!) in order to support large numbers of producers and consumers.

2

• Messages should rarely travel unnecessarily over a network link. This means that JMS’

content-based filters will be evaluated as close to the publisher as possible.

• Presumo should be easy for developers to use with default configurations and application
designers should have the ability to deploy at least small applications based on Presumo
without their customers having to know it exists within the application.

• It must possess the capability to be truly embeddable within an application.

• Every effort should be made to reduce the amount of maintenance required. Features

that will require end user maintenance will be ignored or de-emphasized. Application
designers should be able to disable features that require end user maintenance.

• Presumo performance (in terms of message throughput) should be within 10% of the

leading implementation.

• Logging should be used within the code to enable rapid debugging.

• Implementation details should be maintained with the source code in the form of javadocs.

• The communication layer must be easily adaptable to various network protocols.

• The server must be able to accept client and inter-server connections from different
protocols simultaneously.

Publish/Subscribe Routing

 The basis for the Presumo design is the implementation of the JMS’
publish/subscriber API. One reason the pub/sub API is favored over the point-to-point API
because it is more conducive to a truly distributed implementation. Most implementation favor
point-to-point over pub/sub, and only put together kludged pub/sub solutions. Presumo will
give JMS developers a well-designed pub/sub solution.

 Presumo’s distributed pub/sub design does not rely on any centralized controller.
This contradicts the JMS API’s reliance on JNDI since most JNDI implementations are
centralized. For the first release applications will be encouraged to manually create their
connections, queues and topics. Nothing will prevent application developers from creating the
administered objects manually and storing them in a JNDI implementation.

 Presumo is capable of many different network topologies. Figure 1 demonstrates the
most simplistic topology. Here an application is using JMS to decouple communication
between component X and Y. The key point with this “topology” is that no additional server is
needed when an application uses Presumo’s server client (client with routing logic). This
allows designers to start using JMS early in the project while allowing for components to scale
to different computers, as more scalability/flexibility might be needed in the future.

3

JVM

Client 1 Client 2

Router

Figure 1 - Serverless "topology"

 Figure 2 demonstrates Presumo in the classic client/server topology that is common
with other JMS providers. A single server with multiple clients connected to the server. In
Presumo the clients could be configured to communicate with the server with different
protocols.

Client 1 Client 2

TCP/IP SSL

Router
Server

Figure 2 - Client/Server topology

 While most JMS implementations can be configured in the client/server topology of
figure 2, few can be configured to a more complicated topology represented in Figure 3. Here
multiple Presumo servers are connected to each other with some servers having clients
attached. The servers form a JMS cloud and all clients connected to any server in the cloud
can talk to one another. The servers can be connected in any formation as long as a cycle is
not formed. Presumo servers will be connected in any possible “spanning tree”. Each server
in the topology can have n neighbors where n is only limited by the performance of the
machine. It is expected that large topologies will be deployed to suite the underlying network
architecture. For example, servers may be placed on either side of a WAN, using a secure
protocol to communicate with one another. Yet clients on more secure networks could use a
more efficient protocols for communication.

4

Client 1
Publisher<Baseball>
Subscriber<Football>

Server
A

Server
B

Server
C

Server
D

Server
F

Server
E

SSL

HTTP

IPC

IPC

TCP/IP

Client 2
Subscriber<Football>

Client 4
Publisher<Soccer>

Client 5
Publisher<Football>

Client 3
Subscriber<Football>

HTTP
HTTP

HTTP

H
TT

PS

SSL

Figure 3 - Advanced topology

 The Presumo servers must coordinate their activities in order to properly route JMS
messages. As previously mentioned there is no centralized server instructing the publishers
how to send their messages to subscribers. Instead a mechanism is employed where the
routing information propagates from the subscriber to the publishers. Let us consider an
example.

 In Figure 3, there are three subscribers in the deployment. Server B has two clients,
one with a subscriber to topic “Football”, and another to topic “Baseball”. Server C also has a
client with a subscriber on the topic ”Football”. The other clients are only publishers.

 After the subscribers have been created, server B would have told server A to send it
any messages sent to topics “Football” and “Baseball” since it is servicing clients with
subscribers on those topic. Server C would have told server A to send message to the one
topic “Football”. Server A would then need to tell server C and D that it needs messages from
them on both topics since it is servicing clients (through one level of indirection) on those
topics. Server A would also have to tell server B it needs messages on just “Football” but tell
server C it needs messages on both topics since server B is serving clients with both topics.
Finally, server D would instruct server E and F to forward messages on both topics.

This operation can be summarized by saying that for each server y which has a set of
neighbors N, for every neighbor x in the set, a server must send a list of all topics
needed by N – x (all members of the set minus x) to x.

 After the routing information has propagated, client 5 could publish a message to the
topic “Football”. Server F will know D is interested in the message and forward it. Server D
will then forward it to server A but not server E since E is not servicing any subscribers on the
topic at any level of indirection away from server D. Server A continues the process by

5

sending the message to server B and C, who finally send the message to the interested
clients.

 What happens when client 4 publishes messages to topic “Soccer”? Nothing. Once
server E receives the message it is dropped immediately since nobody is interested. Another
example a server making autonomous routing decisions is client 1 publishing messages to the
topic “baseball”. Here the messages are immediately routed the subscriber on topic
“baseball” within client 2 with no help or information from other servers. This ability for servers
to route messages and make decisions to drop messages with the information contained
locally allows the routers to act independently in a distributed fashion and thus avoiding a
potential centralized bottleneck.

Implementation Links

• Router source code

Filter Optimization

 The previous section talked about how Presumo servers pass information about
active subscribers on topics to determine where published messages should be routed.
Presumo also performs the more complicated task of propagating and applying the JMS SQL-
like content based filter in the same manner as the topic information. Actually, to simplify
development the topic is actually changed to a filter (i.e. topicname = “Football”) and is logically
ANDed with the Subscriber’s filter. This combined filter is then sent to represent the messages
the Subscriber wishes to receive.

 Routers are used for all routing communication. For example, when server B in the
example based on figure 3 needs to tell server A what messages it needs, it logically ORs
together the filters from clients 1 and 2. When server A needs to tell server D what message
to pass, it ORs together the filters from servers B and C.

 Persumo has a very efficient way of evaluating a message against many, or large
filters. This subsystem is the main optimization. Most JMS implementations do not perform
filtering on the server. Performance restrictions are cited as the main reason. This is a valid
concern, consider a scenario where there is one server with 1000 subscriber’s attached to it. If
server side filtering is enabled, every message that passes through the server will have to be
evaluated against each of the 1000 subscriber’s filters. If the server hopes to maintain a
throughput of 1000 messages per second, it would have to perform 1000 x 1000 (or 1 million)
filter evaluations per second. This is certainly not possible and the numbers only become
more impossible if you are talking about 10,000, 100,000 or 1 million subscribers.

 Analysis of common use cases shows most applications use exactly the same filter or
similar filters. If most of the filters are similar or identical, why evaluate each message against
the same filter multiple times. Consider the previous example of 1000 filters. If these
subscriptions are created by only 2 different applications running on 500 clients, and every
filter created by the application is identical. We should only have to do 2 filter evaluations at
the server to route a given message. As a result, to route messages at a rate of 1000
messages per second, we will only need to do 2000 filter evaluations a second.

This is certainly not impossible. In fact, the first prototype of Presumo was capable of
performing over 10,000 filter evaluations per second. Presumo’s filter evaluation mechanism
ensures that not only common filters, but also common sub expressions within separate filters

6

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/jms/router/

are never evaluated more than once per message. As a result, applications with similar filters
will also benefit from this optimization.

Implementation Links

• Filter implementation source code

Transport Layer

 Today there are many ways a developer can send information over a network. To
name a few TCP, UDP, Multicast, RMI, CORBA, HTTP, HTTPS and SSL. There is also the
possible need and future unforeseen transportation mechanisms. During initial development it
was not certain how this JMS implementation would be used, so the transport layer was
purposely abstracted out. This will allow for the design to be used in various settings as well
as allow for future improvements to the actual transportation mechanism without affecting the
routing logic.

 Another result of this abstraction is the ability of this JMS implementation to support
multiple protocols simultaneously. This will be useful for backward compatibility and for
situations that will require different protocols. Consider a multi-homed gateway sitting between
protected and unprotected domains. The router could be able to accept SSL connections from
the computers in the unsecured domain and TCP connections from computers within the
protected domain.

 The primary purpose of a pluggable interface is to allow for developers to work on
different transportation protocols without worrying about the details of the routing logic. It
would be possible for an application to supply its own transportation protocol. While possible it
probably is not prudent to allow each application to implement and use separate transportation
mechanisms. Rather multiple protocols should be built into the system, and the administrator
should select the protocols the routers will use for communication.

Implementation Links

• Transport interfaces

• TCP/IP Transport implementation

Persistence

 JMS supports a notion of persistent messages which are defined to be delivered
once-and-only once. Presumo will accomplish reliability without requiring fault-tolerant
hardware. The design favors surviving hardware failure by failing over to backup systems.

 To survive temporary system outages, a JMS implementation must write every
persistent message published to a transactional system. After the message is safely stored it
may be routed to a destination. Once the destination has received and acknowledged the
message, it must be deleted from the transactional system. Most RDMS cannot handle this
amount of transactional deletes and writes since they are optimized for reads. This is why
other transactional messaging systems wrote their own transactional storage mechanism and

7

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/jms/selector
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/jms/plugin/transport/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/jms/plugin/implementation/transport/tcp/

is why this design will call for our own customized transactional queuing system optimized for
highly granular deletes and writes with commits.

 Furthermore, an asynchronous messaging API should be asynchronous. This means
that an implementation must strive to allow for applications to publish messages without
incurring any network I/O penalties. JMS implementations must somehow place a message
safely in the system and return from the publish call, then route the message. This also means
that applications can publish messages when the network is down, but the publish still returns
successfully because the JMS implementation has queued the message in persistent storage
for later delivery when the network is recovered. JDBC will not be used to store messages
since it may incur network traffic for every message written or deleted.

 To survive permanent system outages without relying on fault-tolerant hardware,
Presumo must guarantee that a particular message is stored in separate nodes. In the event
of a total system failure (the node can not reboot or has lost its physical media), Presumo must
have enough state information stored in nodes that did not fail to determine who has and has
not received a given message. Once you have done all of this work, it is possible to have a
persistent message implementation that does not actually write messages to disk, but rather
always guarantees that a message is stored in memory on separate machines.

 While possible to implement Presumo as a system with “in-memory” persistence, this
will not be done. Presumo will continue to store message on the disk within transactions in a
methodology similar to store-and-forward, while still maintaining the same amount of state
information necessary for “in-memory” persistence. This means Presumo should not loose a
persistent message unless two adjacent routers fail completely within the time period required
to recover the first failed system. Nothing will prevent administrators from place Presumo on
HA boxes thus making the chance of two adjacent systems loosing their physical media
almost simultaneously extremely small.

 To reduce network traffic, acknowledgements should be batched, or piggyback on top
of other messages. Depending on how efficient this mechanism is, all messages could follow
use the same mechanism (including non-persistent messages). Persistent messages would
have the additional fault-tolerance of being persisted to disk.

Implementation Links

• Persistent queue source code

Client

 Eventually there will be two types of JMS clients in Presumo. The first type to be
implemented will be a client that resides in the same JVM as the router. In other words the
client will be the same code base as the server/router. The second type of client for future
releases would be a true lightweight client with a minimal amount of functionality.

 The server client will continue to exist even when there is a true lightweight client
because there is a valid use case for it. For example, the server client could be embedded
into an application using JMS for intra-JVM inter-component communication. The server client
will be able to route messages without an external server.

8

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/jms/persistence/

The lightweight client’s architecture should be language independent, so it can be
implemented in other languages besides Java. The java version should be able to run on
1.1.x JVMs to enable its use within applets.

Implementation Links

• The server client source code

Point-to-Point and Durable Subscriptions

 The point-to-point implementation in Presumo will be based on the pub/sub routing
infrastructure. This is different than most implementations which implement pub/sub on top of
their existing point-to-point routing infrastructure. Presumo is dedicated to being a high quality
pub/sub implementation. The point-to-point implementation should be a quality product and
perform well, but will not be emphasized as much as pub/sub.

Implementation Links

• Queue manager source code

• Client implementation

Logging and Internationalization

 Presumo uses logging as the main mechanism of debugging and reporting errors.
The logging mechanism is pluggable so that an application may substitute their own logger in if
they wish. They should simply have to implement Presumo’s Logging interface and specify
which logger to use in a configuration file.

There are four levels of logging in Presumo.

1. Debug – For development debug messages (not internationalized/English)

2. Informational – Internationalized non-critical informational messages for the user.

3. Warning – Internationalized messages informing user of a potentially dangerous state
(queue almost full).

4. Error – Internationalized messages informing the user that something went wrong
(queue full and message dropped).

All messages that the end user might see should come from an internationalized resource
bundle. All internationalized messages should have a message id placed in the translation
string so that developers can reverse translate any given log.

While the importance of logging will be stressed, certain critical sections of code will not
contain any logging statements for performance. These sections can usually be identified as
methods that are called multiple times per message routed. Adding logging to these types of
methods will affect message throughput, and therefore must be omitted. Code quality must
be ensured in these sections with rigorous reviews.

9

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/jms/client/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/jms/qmgr
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/jms/client

Implementation Links

• Logging interface and implementation

10

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/presumo/jms/src/com/presumo/util/log/

	Project Mantras
	Publish/Subscribe Routing
	
	Implementation Links

	Filter Optimization
	
	Implementation Links

	Transport Layer
	
	Implementation Links

	Persistence
	
	Implementation Links

	Client
	
	Implementation Links

	Point-to-Point and Durable Subscriptions
	
	Implementation Links

	Logging and Internationalization
	
	Implementation Links

